

Machine learning is one of the most important trends in tech right now. But like anything new, it naturally raises a number of important questions and concerns. Benedict Evan's most recent blog post provides a good explanation of what he refers to as the artificial intelligence bias. Here are a couple of excerpts that I found interesting.
What machine learning does:
With machine learning, we don’t use hand-written rules to recognise X or Y. Instead, we take a thousand examples of X and a thousand examples of Y, and we get the computer to build a model based on statistical analysis of those examples. Then we can give that model a new data point and it says, with a given degree of accuracy, whether it fits example set X or example set Y. Machine learning uses data to generate a model, rather than a human being writing the model. This produces startlingly good results, particularly for recognition or pattern-finding problems, and this is the reason why the whole tech industry is being remade around machine learning.